CREATIVITY IN TASKS COMPETENCE AND PSYCHO-PRODUCTIVE SKILLS PERFORMANCE IN VEGETABLE PRODUCTION AMONG UNIVERSITY AGRICULTURE INTERNSHIP STUDENTS

ONANUGA, Peter Abayomi & BADA, Abayomi Adeyinka
1Department of Curriculum Studies & Instructional Technology, Faculty of Education, Olabisi Onabanjo University, PMB 2002, Ago-Iwoye, Nigeria
2College of Agricultural Sciences, Olabisi Onabanjo University, PMB 2002, Ago Iwoye, Nigeria
E-mail: pierrenuga@gmail.com onanuga.abayomi@oouagoiwoye.edu.ng; abaymibada007@yahoo.com
Phone No: +234-803-408-3958; +234-706-065-0767

Abstract
The study investigates the influence of creativity in tasks competence on psycho-productive skills performance of undergraduate internship agriculture students. Seventy-two Agricultural science undergraduates who had gone through the mandatory internship programme in the 2012/2013 academic session consisting of (24 females and 48 males) were administered with two instruments- Nicolas Holt Creativity Test (NHCT) and Psycho-productive Skills Performance Rating Scale (PSPRS). Four hypotheses were formulated and tested and the data collected were analysed with the use of frequency counts, percentages, mean, standard deviation, ANOVA and Regression. Results reveal that there is significant difference between male and female students in psycho-productive skills performance. Also, that there is significant relationship between creativity and student's performance. As part of the recommendations, University Agriculture curriculum should be structured towards the development of cross-cutting curricula which promote creative and critical thinking, discovery-based problem solving, and leadership and communication skills.

Keywords: Creativity, Tasks Competence, Psycho-productive Skills Performance, Internship Students

Introduction
There is a growing urgency for academic reform among agricultural colleges within higher education (Fields, Holberg, & Othman, 2003; National Research Council, 2009; Osborne, 2007); coupled with an increasing rate of global change which resulted in seeking to solve complex societal challenges linked to the world’s food and energy supplies. The best feasible solutions in this instance may require broad, system-wide approaches, multidisciplinary strategies and collaborative efforts of discovery and innovation. To meet the expected need, today's students in the agricultural sciences must be educated as adaptive and resourceful lifelong learners, able to deal readily with dynamic, complex problems facing 21st century society. The most essential in this situation is the development of cross-cutting curricula which promote creative and
critical thinking, discovery-based problem solving, and leadership and communication skills. This can be done in a manner that challenges students to make connections across disciplines with strong background in the traditional disciplines of science.

Meanwhile, for decades, experiential learning models have been a hallmark of agricultural science programmes (Andreasen, 2004). The mastery of concepts and skills develop higher-order thinking and transferrable skills necessary to prepare the workforce of the next generation (National Research Council, 2009). In former times and still in current practices, internships and service-learning efforts were among the most common examples of agricultural experiential learning which occurred outside the classroom. Today, we can still make further effort at promoting such practices to consolidate and advance enterprise skills development among agriculture students in the undergraduate education. This is particularly expedient having noticed that Agriculture has changed tremendously and in consequence too, the need of agricultural students has also changed. More new and specialised skills have to be learnt, practiced and mastered before students can establish farm businesses or become employable in the contemporary agricultural farm. Specialised employment areas requiring special training have emerged posing a global challenge to the stakeholders and practitioners of agriculture.

In addition, emerging industries are demanding for highly skilled labour in view of increasing sophisticated technology and to meet with this challenge, the students must be trained and developed to acquire the new and improved technical skills and knowledge to satisfy the demand of the modern industries. For this simple reason, institutions require well equipped workshops to produce the right calibre of people, proficiently skilled and are self reliant. It is important to note that, skill development is important for harnessing the nation’s natural resources and for promoting economic stability (NEEDS, 2005). Skill development is essential for the development of intrinsic potentials in an individual. To enable the young people who are in the school to develop their psycho-productive skills, there is the need to provide assistance for them to learn by doing and through various experiential activities needed which can only be provided by a work-linked type of education.

It has however been observed that most of the learning which takes place in Nigerian Universities in training agriculture undergraduates largely emphasizes mostly the cognitive domain of learning at the expense of the psychomotor which emphasizes learning by doing, manipulative skill development and are not work linked. Obanyan (1984); Olaitan and Ali (1997) remarked that this type of liberal education encourages students to learn the content of the curriculum through rote learning from text books with the tendency to be able only to describe necessary concepts, equipment and procedural steps off-head, and recite the skills but not being able to perform any one of them. The consequence of the old method of rote learning in vocational education subject like agriculture is that the students are made to memorize theories and principles with little or no practical or relation on how the theories could be applied to solve any problem on any work or job area. Hence most students graduate from Nigerian Universities and colleges without any appreciable saleable skills with which they can be employed.
It is necessary and will be more appreciated when it is remembered and pursued such that the demand for technological development can only be achieved when there is acquisition of adequate and relevant skills at all times. It is believed that effective vocational training can only be given where the training jobs are carried out in the same way with the same operations, the same tools and the same machines just like in the occupation or work environment itself. The Nigeria NEEDS (2005) identified agricultural sector, industries, commerce and technical education as the sectors that need training and retraining of new and old hands, for nation building and technological development strategy. According to Okorie (2000) most Nigerian educational institutions of learning do not prepare their students with adequate training in skills to fit them for productive work.

The Greek philosopher, Aristotle had long recognized the need to classify knowledge not only into disciplines but also into broad areas. On the basis of the aims of and the character of the materials depending on which each of disciplines deals with in the body of knowledge. Aristotle was able to classify knowledge into three domains namely: theoretical, practical and productive (Ezewu, 1984). The productive domain is concerned with the making, processing and the production of material things and under this group were subjects as Fine Arts and Applied Arts. In the study of agriculture this classification applies such that there is making, processing and production of materials.

Skill is the ability to use one's knowledge effectively and readily in execution or performance (Merriam Webster, 2014). It is a learned power of doing something competently. Succinctly, it is a developed aptitude or ability. Dynneson & Gross (1995) showed that skill is the ability and knowledge of using a particular thing accurately. Borger and Seaborne (1966) posited and presented skill as a particular complex activity that requires a period of organized training and practicing so as to lead to an appropriate manner, and in this sense the focus is on activity, achievement and the treatment of mental realism. However, (Olaitan & Ali, 1997) submitted that psycho-productive skills are necessary in all skill learning situations especially where students are exposed to practice of skills and are expected to perform these skills in occupations in which they are employed. It can be explained that the psycho-productive skill emphasizes performance which is the most vital aspect of learning for living. According to Igbo & Olaitan (1999) psycho-productive skills are manipulative skills or acquire abilities which signify performance of tasks adequately with the muscles in response to sensory stimuli.

Task listing is an inventory or catalogue of series of agricultural activities in vegetable production required to be carried out and accomplished within a specified period of time by the internship students. Task according to Wikipedia, (2014) is an activity that needs to be accomplished within a defined period of time or by a deadline. It is basically any piece of work that is undertaken or attempted by the undergraduate in this study. This is a usually assigned piece of work often to be finished within a certain short time. Task execution or completion of an assigned activity eventually leads to performance because task in itself is an integral
component of performance display. Therefore, in the context of this study, psycho-productive skills performance is the detailed examination of observable activity or behaviour associated with the execution or completion of a required function or unit of work.

Creativity is “the process of sensing problems and awareness of weaknesses, gaps, inconsistencies, lack of information, the search for solutions, forecasting, formulating and choosing new hypotheses in order to reach solutions or new commitments by using available data and the transfer or delivery of results to others” (Torrance, 1993:43). Creativity is needed by everyone in whatever business, vocation, job, service or task that we all do. It is the foundation of change and innovation and the solution to many problems. Therefore, it is one of the responsibilities of education to foster creativity in the students. Creativity develops when teachers encourage curiosity, exploration, confidence, risk-taking, and balance (James, Gerard, & Vagt-Traore, 2014) in their students. According to Juan (2014), he stated that “swan-shaped gourds, golf-sized tomatoes, eggplants that were usually mistaken as white turnips ... We find that when creativity is utilized in agriculture, it will bring not only different sight and taste experience, but also extraordinary value added”.

The preparation of adolescents and youths for the world of work includes among other things the possession of skills and qualifications that are saleable in employment market. It is based on this awareness that the production skills acquisition in agriculture is the possession of relevant competencies needed in Agricultural industries through exposure to both theoretical and practical knowledge of Agriculture (Etuk, 1991). It is in line with this backdrop that this study was conceptualised to assess the agricultural tasks execution that are involved in concert with creativity emphasizing on the psycho-productive skills performance in vegetable production by agriculture undergraduates undergoing the internship programme in a public owned University in Nigeria.

Generally, the emphasis on skill acquisition is due to the high rate of unemployment among graduates, high rate of crimes due to ill-trained youths in advancing technology and challenging economy. Invariably the learning of agriculture must utilise methods that will enhance students’ acquisition and sustenance of knowledge, skills and self-concept formation as well as interest. Perhaps it is based on this that, Olaitan, Nwachukwu, Igbo, Onyemachi & Ekong, (1999), Ogwo & Oranu (2006), recommended field activity-based methods for instruction delivery in such instance. Akpan (1998), indicated that there was significant correlation between vocational education and employability and that vocational education has a significant influence on self-reliance as a result of training. This implies that vocational agriculture education is capable of providing trainees with functional and desirable competencies or professional skills preferred by industries and employers of labour. Olaitan, Nwachukwu, Igbo, Onyemachi and Ekong (1999) pointed out that vocational technical education is education for work. The emphasis in vocational education is on skill acquisition as specified in Nigeria’s Educational reforms which are intended to ensure value re-orientation, self-reliance, poverty eradication, job creation and wealth generation (Obioma, 2007).
Vocational agriculture education is knowledge, skill and technology driven. It empowers students with employable skills and job creation potentials leading to poverty reduction. The acquisition of employable skills empowers the students with competence to practice, create, develop and establish agricultural farms and business ventures (Imandojemu, 2001; Ukut & Udofia, 2001). The skill acquisition by students can only be achieved where the training institutions are adequately funded, equipped with adequate facilities and have competent and experienced personnel that adopt effective and efficient instructional methods. This would facilitate and improve students’ skills acquisition as asserted by Bassey and Inyang (2001) who observed that there was a relationship between instructional materials and students’ skill development. The results of the study of Bassey and Inyang (2001) on skill development efforts of male and female students in Business Studies showed that boys tend to have higher level of skill development and performance than girls in technical education related subjects.

The study of Nsa, Akpan and Williams (2012) revealed that there was significant effect of instructional strategies on the students’ skill acquisition in vegetable crops production activities. It showed that guided-demonstration was the most effective followed by discovery learning, while expository was found to be less effective in enhancing skill acquisition. The findings revealed that there was no significant effect of gender on students’ skill acquisition in layout for vegetable production activities. It recommended that given adequate practical exposure, the students could acquire the needed psycho-productive skills and also positive attitude toward the subject. However, Uwameiyé and Osho (2011) shows that attitude is capable of predicting academic achievement of students in clothing and textile. In the study those with positive attitude are more likely to do well in clothing and textile courses. The findings of this study also indicate that motivation can predict students’ academic achievement in clothing and textile. This indicates that students that are motivated often show positive attitude towards clothing and textile courses and also perform better in clothing tasks. It suggested that the curriculum of schools should be developed with variety of methods to motivate students to learn especially in courses students seem to find difficult.

The study of Struthers, Menec, Schonwetter and Perry (1996) showed that there is a relationship between creativity and student’s performance. The study's participants were 313 male and female introductory psychology students at The University of Manitoba in Canada which examined the relationship between students’ attributions, action control and creativity and their subsequent motivation and achievement. The study showed the levels of action control and creativity in the unstable attribution condition translated into significantly different grades in students’ introductory psychology course. It found out that despite initially being relatively high in motivation (unstable attributions), students who were either state-oriented and low in creativity, or state-oriented and high in creativity, produced lower course grades compared to action-oriented, highly creative students. This finding indicated a relationship between causal attributions, creativity, and action control orientations and students’ performance. Implicitly, this shows that students who made unstable attributions for poor performance are more likely to have lower grades in the course.
academic performances and who were highly creative and action-oriented, were buffered from performance deficits. In contrast, the students who made unstable attributions and who were high in creativity and state-oriented were inhibited from performance increments.

In another study, Fodor and Carver (2000) examined undergraduate students of both sexes in engineering and science from Clarkson University, a predominantly technological university. The students completed the Thematic Apperception Test (TAT), which was scored for achievement motivation and also for Power motivation and participated in the experiment with 144 experimental participants, 48 in each of three experimental conditions namely: positive, negative, or no feedback concerning prior performance on an engineering problem. The Achievement motivation correlated positively with creativity score in the positive and negative-feedback conditions ($r = .43$ and $.38$) but not significantly in the no-feedback condition ($r = .10$). However, the Power motivation correlated positively with creativity in the positive-feedback condition ($r = .32$), and negatively in the negative-feedback condition ($r = -.25$), but not significantly in the no-feedback condition ($r = .17$).

Numerous psychological studies have shown that formation of a stable and positive creativity is one of the major developmental challenges of students in the Iran. For instance, (MehrAfza, 2004) conducted a research on the study of creativity and academic achievement among 384 of students (boys and girls) examined in Tabriz high schools. This research was carried out in random and the data collected by the Abedi’s questionnaire of creativity and CGPA was used for educational evaluation. The result showed that there is no difference in the overall creativity scores between boys and girls. However, in middle of section boys are statistically higher than girls, but girls are statistically higher in flexibility than boys. Boys and girls are different in academic achievement and the average of academic achievement in girls was more than in boys.

In another investigation, Nori (2002) studied the sex difference according to the type of relationship between creativity and academic achievement among high school of students in Shiraz city in Iran. The study comprised of 306 high school students (150 boys and 156 girls) and to measure the rate of creativity, the study also used Abedi’s questionnaire and CGPA for academic achievement. It revealed that there is no significant relationship between creativity and academic achievement, but the result was different in the sex difference. The finding showed the significant difference in academic achievement of boys and girls. The Academic achievement was more in girls than in boys and it is significant. Meanwhile, Karimi (2000) was about the study of relationship between creativity, sex and academic achievement among secondary school students. The result showed significant relationship among these variables as follows: There is a relationship between creativity and academic achievement. Also, the comparison between girls and boys in creativity is indicative of the significant difference between the two sexes. The boys strikingly excelled better than the girls in creativity. The study of Mahmodi (1998) considered personality features, creativity and academic achievement among 106 students in Tehran, Iran. The result showed a significant relationship between creativity and academic achievement.
Naderi, Abdullah, Aizan, Sharir, and Kumar (2009) examined creativity, age and gender as predictors of academic achievement. The participants in the study were 153, comprising of 105 males and 48 females undergraduate students. The findings revealed that creativity, age and gender explained 0.143 of the variance in academic achievement and the significance level was indicated by the F-value of 8.294. The multiple regression analysis showed interaction effects between creativity, age and gender as low predictors of academic achievement. The Behroozi (1997) studied the relationship between personal features and creativity and also between creativity and academic achievement among 187 university students through Cattell questionnaire of creativity. The result showed no significant relationship between creativity and other variables. It is in line with the foregoing that the study was conceptualised to assess the creative tasks competence in performing psycho-productive skills in vegetable production among University Agriculture Internship students. In effect, the training of the students will promote creativity as much as integrating cognitive and psycho-productive domains of learning so as to possess relevant competencies needed in Agricultural industries exposure to both theoretical and practical knowledge.

Objective of Study

The main objective of this study was to assess the tasks execution and creativity in relation to psycho-productive skills performance in vegetable production of University undergraduates undergoing internship programme. Thus the following hypotheses are examined in this study:

(i) There is no significant gender performance difference between male and female students’ creativity in tasks competence.

(ii) There is no significant gender difference in psycho-productive skills performance of agriculture undergraduate internship students.

(iii) There is no significant relative difference in creativity level in tasks competence and psycho-productive skills performance of agriculture undergraduate internship students.

(iv) There is no significant relative influence of creativity in tasks competence on psycho-productive skills performance of agriculture undergraduate internship students.

Methodology

In the study, the independent variable (Creativity of Agriculture Internship students) and the dependent variable (Psycho-productive skills performance) have already occurred. The research only attempted to identify and compare the variables (without manipulating them) for the purpose of making inferences about their relationship. Therefore, Ex-post-facto research design was adopted to find out and describe the extent to which the level of creativity influenced the psycho-productive skills performance of 400Level students of Olabisi Onabanjo University, Ogun State, Nigeria. Many scholars agreed that Ex-post-facto design is the best design for collecting data on variables that have already occurred.
The population comprised of seventy two Agricultural science undergraduates who had undergone the mandatory internship programme in the 2012/2013 academic session with 24 females and 48 males. The sample was purposively selected as intact group for the study.

Instrument

There were two instruments designed to guide the study namely: Nicolas Holt Creativity Test (NHCT) and Psycho-productive Skills Performance Rating Scale (PSPRS).

1. Nicolas Holt Creativity Test (NHCT): NHCT is a twenty-nine (29)-item instrument, developed by Nicolas Holt to test the level of creativity of persons in the areas of fluency, originality, flexibility and elaboration of traits, among others. This test was adapted to the study to examine the creativity of the students in tasks competence of specified agricultural tasks in the procedure outlined to prepare land, bed, planting and tendering the seedlings to maturity and harvesting stage. In all there were nine specified agricultural tasks outlined for each student to carry out proficiently and correctly.

2. Psycho-productive Skills Performance Rating Scale (PSPRS): This is competency-based observer’s rating scale graduated on a six grade point from 0-5. Each of the nine tasks is graded using the rating scale depending on the depth of execution of the outlined agricultural tasks with proficiency, accuracy and speed. The focus is on the actual performance of tasks especially at the execution stage. The execution stage includes identifying tasks elements, handling instruments and materials properly. The nine areas of competency was utilised for the observation and graded with the lowest score as 0 and the greatest as 5, thereby giving the matrix a maximum total score of 135.

The areas of grading covered the execution of skills in the following agricultural tasks:

- i. Land preparation.
- ii. Vegetable bed making and treatment
- iii. Seed sowing and spacing
- iv. Mulching operation
- v. Thinning of seedlings
- vi. Watering of seedlings
- vii. Fertiliser application
- viii. Pests and disease control
- ix. Harvesting of vegetable product.

The instruments were validated by subjecting them to review through the contributions, comments and corrections of two colleagues who are researchers in the fields of education and agricultural sciences and two farm officers of the College of Agricultural Sciences Research Farm for both content and face validity. The reliability test was conducted when
the researcher carried out a trial test on a small sample of Twenty students of Federal University of Agriculture, Abeokuta.

The Programme Coordinator obliged in assisting to reach out to the students by facilitating the administration for the Creativity test at the beginning of the first semester during the orientation exercise of the students with the full cooperation of the Agricultural Superintendent attached to the Internship students. The instrument was distributed among the respondents and collected back on the spot hence it gave a 100% rate of return. The Higher Agricultural Superintendent attached to the cohort was trained on how to use the rating scale in the execution of the performance skills of the students as outlined and scheduled for the study. The rating and grading was done in the first semester of the 2012/2013 academic session. The outcome was collected from the office of the Internship Coordinator for the purpose of the study that was carried out in the succeeding semester.

The obtained data from the study was analysed using frequency, percentages, mean, standard deviation, ANOVA and Regression.

Results

The respondent characteristics in the study are shown in the following statistics as indicated in Tables 1 & 2:

Table 1: Sex distribution of respondents

<table>
<thead>
<tr>
<th>Sex</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>48</td>
<td>66.67</td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>33.33</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The table 1 shows that 48 representing 66.67% were male students and 24 representing 33.33% were female students. This implies that there is gender sensitivity in the pursuit of agricultural sciences as course of study in the University.

Table 2: Course departmental distribution of respondents

<table>
<thead>
<tr>
<th>Department of Study</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Production</td>
<td>6</td>
<td>8.33</td>
</tr>
<tr>
<td>Animal Production</td>
<td>17</td>
<td>23.61</td>
</tr>
<tr>
<td>Agric Extension & Rural Sociology</td>
<td>4</td>
<td>5.56</td>
</tr>
<tr>
<td>Agric Economics & Farm Management</td>
<td>45</td>
<td>62.50</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The table 2 shows that 23 (31.94%) students are in the agricultural production specialist courses and 49 (68.06%) are in the services specialist courses. The majority of the respondents
fall under the category of the services specialist courses and in effect the area of study may reflect in the pattern of execution of tasks performance competence.

Hypothesis 1: There is no significant gender performance difference between male and female students' creativity in tasks competence.

Table 3: Gender performance difference creativity in tasks competence

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>df</th>
<th>t-cal</th>
<th>t-tab</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>48</td>
<td>8.44</td>
<td>12.81</td>
<td>70</td>
<td>2.35</td>
<td>1.96</td>
<td>Sig.</td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>6.32</td>
<td>7.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significant at P < 0.05

The table 3 results show that the obtained value of t (2.35) is greater than the critical value of t (1.96) at 70 degree of freedom and 0.05 level of significance. This implies that there is significant gender difference between male and female students' creativity in tasks competence.

Hypothesis 2: There is no significant gender difference in psycho-productive skills performance of agriculture undergraduate internship students.

Table 4: Gender difference in psycho-productive skills performance in agriculture

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>df</th>
<th>t-cal</th>
<th>t-tab</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>48</td>
<td>5.22</td>
<td>2.18</td>
<td>70</td>
<td>3.65</td>
<td>1.96</td>
<td>Sig.</td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>3.76</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Significant at P < 0.05

The table 4 results show that the obtained value of t (3.65) is greater than the critical value of t (1.96) at 70 degree of freedom and 0.05 level of significance. This implies that there is significant gender difference between male and female creativity in psycho-productive skills performance in vegetable production among agricultural science internship students.

Hypothesis 3: There is no significant relative difference in creativity level in tasks competence and psycho-productive skills performance of agriculture undergraduate internship students.

Table 5: One way Analysis of Variance on students’ creativity level in tasks competence and psycho-productive skills performance

<table>
<thead>
<tr>
<th>Creativity Level</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>SD Error</th>
<th>df</th>
<th>F</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>8</td>
<td>88.50</td>
<td>1.29</td>
<td>.64550</td>
<td>70</td>
<td>138.93</td>
<td>Sig.</td>
</tr>
<tr>
<td>Medium</td>
<td>41</td>
<td>95.00</td>
<td>2.00</td>
<td>.26261</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>23</td>
<td>101.11</td>
<td>1.47</td>
<td>.28997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P<0.05
Table 5 results show F-value of 138.93; p<0.05. Hence, it reveals there is significant relative difference in creativity level in tasks competence and psycho-productive skills performance in vegetable production. The implication of this finding is that the students’ creativity significantly assisted in tasks competence in psycho-productive skills performance during in vegetable production during the internship programme of agricultural sciences students. Hence the higher the creativity level the higher the psycho-productive skill performance in vegetable production by internship students.

Hypothesis 4: There is no significant relative influence of creativity in tasks competence on psycho-productive skills performance of agriculture undergraduate internship students.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t</th>
<th>sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-352.058</td>
<td>41.726</td>
<td>-8.437</td>
<td>.000</td>
</tr>
<tr>
<td>Creativity</td>
<td>4.514</td>
<td>.432</td>
<td>10.449</td>
<td>.000</td>
</tr>
</tbody>
</table>

R²	0.559
Adjusted R²	0.554
F statistic	109.181

Table 6 shows that creativity as the only independent variable accounts for 55.9% of the total variance in psycho-productive skills performance of agriculture undergraduate internship students in vegetable production (R² = 0.559, P <0.05) hence this is significant. Therefore, creativity plays a significantly relative influence on psycho-productive skills performance of agriculture undergraduate internship students.

Discussion

The findings of the study revealed that there is significant gender performance difference between male and female students’ creativity in tasks competence. This finding supports the study of Karimi (2000) but disagrees with the study of MehrAfza (2004) and Nori (2002). The implication is that the male students tend to show better creativity than the girls which could be as a result of personal attribute of the respondents. It further found that there is significant gender difference in psycho-productive skills performance. This result supports Bassey and Iinyang (2001) but negates the study of Nsa, Akpan and Williams (2012). However, it implies that as much as the male students show better attitude than the female students, it is imperative that the required adequate practical exposure driven by field activity will
complement provision of adequate instructional materials in skill development process in agricultural production.

The study also revealed that there is significant relationship in creativity in tasks competence and psycho-productive skills performance by agriculture undergraduate internship students. This implies that the higher the creativity exhibited by the students the higher the psycho-productive skills performance in vegetable production. This finding indicates that there is a relationship between creativity and students’ performance thereby supporting Struthers, Menec, Schonwetter, and Perry (1996); Behroozi (1997); Mahomodi (1998) and Naderi, Abdullah, Aizan, Sharir, and Kumar (2009). It further revealed that creativity plays a significantly relative influence on psycho-productive skills performance of agriculture undergraduate internship students. Perhaps this is as a result of the different departments the students belong to hence the exposure to various learning situations in the course of their study in the University. Therefore, creativity is a predictor of psycho-productive skills performance of agriculture students in vegetable production. This finding is in support of Naderi, Abdullah, Aizan, Sharir, & Kumar (2009) and when creativity becomes an attitude it corroborates the study of Uwameiye and Osho (2011).

Conclusion
The study considered creativity as an important impetus to promoting task competence in the agricultural psycho-productive skills performance among undergraduates of the University who just concluded the practical year. The practical year is executed as the internship where the students basically focus on field work for an academic session. Even though there were many activities carried out in that year but the study limited itself to the vegetable production aspect of practical exposure of the agriculture students. The study concerned itself to the relationship existing between creativity and the psycho-productive skills performance in carrying out competent tasks that are involved in vegetable production from the basics to the harvesting stage. It revealed some strikingly interesting results and based on that it made some feasible suggestions in promoting skill development in the psycho-productive learning domain. This is in an effort at building in the students some saleable skills that is required in agricultural activities that can be hinged on self reliance and employment.

Recommendations
As a result of the findings of the study it is recommended as follows:
(i) Creativity should be focal point of training agriculture undergraduates largely with emphasis on the combination of cognitive and psycho-productive domains of learning driven by learning by doing, manipulative skill development and are pointedly work linked.
(ii) In the best interest of the learners and the country at large, University Agriculture curriculum should be structured towards the development of cross-cutting curricula which promote creative and critical thinking, discovery-based problem solving, and leadership and communication skills.
References

MehrAfza, M. (2004). The relationship between child-rearing practices, creativity and academic achievement among students in high school's city of Tabriz, Iran University of Tabriz, Tabriz.

